Überblick
Machine Learning Projekte mit Fokus auf Predictive Analytics und Modellentwicklung.

Technologien
- ML Libraries: Scikit-learn, TensorFlow
- Python: NumPy, Pandas
- Evaluation: Cross-validation, Metrics
- Deployment: Flask, Docker
Projekt-Bereiche
Supervised Learning
- Regression: Preisvorhersagen, Zeitreihen
- Classification: Kunden-Churn, Sentiment Analysis
- Ensemble Methods: Random Forest, Gradient Boosting
Unsupervised Learning
- Clustering: K-Means, DBSCAN
- Dimensionality Reduction: PCA, t-SNE
- Anomaly Detection: Outlier-Erkennung
Model Evaluation
- Train/Test Splits
- Cross-Validation
- Hyperparameter Tuning
- Model Comparison
Key Skills
- 🤖 Model Development
- 📊 Feature Engineering
- 🔧 Hyperparameter Optimization
- 📈 Performance Evaluation
- 🚀 Model Deployment
Methodologie
- Problem Definition
- Data Collection & Cleaning
- Exploratory Data Analysis
- Feature Engineering
- Model Training & Evaluation
- Deployment & Monitoring
GitHub
Code und Notebooks auf GitHub